The effect of buoyancy forces on the boundary-layer flow over a semi-infinite vertical flat plate in a uniform free stream

By J. H. MERKIN
Department of Mathematics, The University of Manchester

(Received 28 November 1967 and in revised form 7 June 1968)

Abstract

The boundary-layer flow over a semi-infinite vertical flat plate, heated to a constant temperature in a uniform free stream, is discussed in the two cases when the buoyancy forces aid and oppose the development of the boundary layer. In the former case, two series solutions are obtained, one of which is valid near the leading edge and the other is valid asymptotically. An accurate numerical method is used to describe the flow in the region where the series are not valid. In the latter case, a series, valid near the leading edge is obtained and it is extended by a numerical method to the point where the boundary layer is shown to separate.

1. Introduction

The situation discussed in this paper is that of a uniform free stream U flowing along a semi-infinite vertical flat plate, which is fixed with its leading edge horizontal. The plate is heated to a constant temperature T_{1} above the ambient temperature T_{0}. Heat is supplied by diffusion and convection from the plate, and this heating gives rise to buoyant body forces. There are two cases to consider: one when the plate extends vertically upwards, and the other when it extends vertically downwards. In the first case the buoyancy forces act in the direction of the free stream, and in the second case, they oppose the free stream. In both cases, near the leading edge, there is little chance for heat from the plate to be taken into the fluid, and the boundary layer is formed chiefly by the retardation of the free stream, but the effect of the buoyancy forces increases as the boundary layer develops.

We shall discuss first the case when the free stream and the buoyancy forces are in the same direction. In this case the fluid in the boundary layer is accelerated by the buoyancy forces so that these act like a favourable pressure gradient. We will refer to this case as thefavourable case. Far downstream, the layer is governed chiefly by the buoyancy forces.

We solve this problem by first obtaining two series expansions, one which holds near the leading edge, and one which holds far downstream (which, in this case, is upwards). A step-by-step numerical method is used to describe the flow in the region where neither of these series holds.

To obtain the series expansions, a transformation is first applied to the boundary-layer equations. The nature of the transformation is dictated by the fact that near the leading edge the situation is essentially that of buoyancy forces modifying the forced convection solution, while asymptotically it is that of the effect of a free stream on the free convection solution. The problems of the small perturbation of the forced convection solution by free convection effects, and that of the small perturbation of the free convection solution by forced convection effects are discussed by Szewczyk (1964). He obtains series expansions to describe the flow in each case, and gives the first three terms in each series for various values of the Prandtl number. 'There are several criticisms that I would like to make of Szewczyk's paper. First, his series expansions are purely formal and not related to a specific physical situation, and secondly he expands in terms of parameters, but, in actual fact, they are co-ordinate expansions that he obtains. This leads him to ignore an important point in considering the effect of the free stream on the free convection solution. In the situation under consideration here, this leads to an asymptotic expansion in $\xi^{-\frac{1}{2}}$, where

$$
\xi=\frac{q \beta \Delta T}{U^{2}} x
$$

(g is the acceleration due to gravity, β is the coefficient of thermal expansion, and $\Delta T=T_{1}-T_{0} ; x$ is the co-ordinate that measures distance along the plate). Stewartson (1957, 1964) points out a fundamental difficulty in obtaining asymptotic solutions of the boundary-layer equations. Since the boundary-layer equations are parabolic in nature, the velocity and temperature at a particular station depend on the velocity and temperature distribution upstream of this station. This, as Stewartson points out, leads to an arbitrariness being introduced into the asymptotic expansion at some stage, which is due to neglecting the boundary conditions at the leading edge. Stewartson found that, in order to resolve this and obtain a solution which was exponentially small at infinity, he had to include a logarithmic term in the asymptotic expansion. A similar situation arises here. When we come to solve the differential equations governing the term of $O\left(\xi^{-1}\right)$, we find that there is a complementary function which satisfies all the required boundary conditions, and so arbitrary multiples of this can be added to any particular integral of the equations which also satisfies the boundary conditions. Because of the existence of this complementary function we find that we have to include a term of $O(\log \xi / \xi)$ in the asymptotic expansion in order to obtain a solution for the term of $O\left(\xi^{-1}\right)$. Szewczyk makes no mention of this in his. paper.

An accurate step-by-step method of the problem is obtained from an adaptation of a method given by Terrill (1960). This starts with velocity and temperature profiles at the leading edge and calculates velocity and temperature profiles. downstream to an accuracy of four figures.

When the plate extends vertically downwards the buoyancy forces retard the fluid in the boundary layer, so that these act like an adverse pressure gradient. This case will be referred to as the adverse case.

To solve this problem we obtain a series expansion near the leading edge, which is related to the series expansion near the leading edge in the favourable case. A step-by-step numerical method is used to extend the series solution to the point where the flow is shown to separate. The numerical procedure is the same as that used near the leading edge in the favourable case. The numerical integration in this case was carried out to an accuracy of five figures, and where the flow separates, it suggests that the skin friction and the heat transfer become singular.

The methods given in this paper are general ones, but, for the sake of brevity, only the results for the case when the Prandtl number $\sigma=1$ will be given.

2. Equations of motion

On the assumption that $\quad U^{2} / a^{2} \ll \Delta T / T_{0} \ll 1$
(where a is the velocity of sound in the fluid and $\Delta T=T_{1}-T_{0}$), we can neglect heating due to viscous dissipation and take the fluid as incompressible, so that changes in density are important only in producing buoyancy forces. The kinematic viscosity ν and the thermometric conductivity κ can then be taken as constant (Whitham 1963, p. 127). The boundary-layer equations then become

$$
\begin{gather*}
\partial u / \partial x+\partial v / \partial y=0 \tag{1}\\
u \partial u / \partial x+v \partial u / \partial y= \pm g \beta\left(T-T_{0}\right)+\nu \partial^{2} u / \partial y^{2} \tag{2}\\
u \partial T / \partial x+v \partial T / \partial y=\kappa \partial^{2} T / \partial y^{2} \tag{3}
\end{gather*}
$$

x is measured along the plate, $x=0$ being the leading edge, and y is measured normally outwards. u and v are the velocities in the x and y directions respectively and T is the temperature of the fluid. In (2) we take the + sign when the plate is vertically upwards (favourable case) and the - sign when the plate is vertically downwards (adverse case). The boundary conditions are

$$
\begin{aligned}
& u=v=0, \quad T=T_{1} \quad \text { on } \quad y=0, \\
& u \rightarrow U, \quad T \rightarrow T_{0} \quad \text { as } \quad y \rightarrow \infty \\
& u=U, \quad T=T_{0} \quad \text { at } x=0 .
\end{aligned}
$$

3. Solution near the leading edge

Near the leading edge the boundary layer is formed mainly by the retardation of the free-stream U by viscosity. The effect of the buoyancy forces increases as the boundary layer develops from the leading edge. This suggests the following transformation:

$$
\begin{aligned}
& \psi=(2 \nu U x)^{\frac{1}{2}} f(\xi, \eta), \\
& T-T_{0}=\Delta T \theta(\xi, \eta),
\end{aligned}
$$

where ψ is the stream function and

$$
\begin{aligned}
\eta & =y\left(\frac{U}{2 \nu x}\right)^{\frac{1}{2}} \\
\xi & =\frac{g \beta \Delta T}{U^{2}} x
\end{aligned}
$$

and

$$
\Delta T=T_{1}-T_{0}
$$

The boundary-layer equations (2) and (3) become

$$
\begin{gather*}
\frac{\partial^{3} f}{\partial \eta^{3}}+f \frac{\partial^{2} f}{\partial \eta^{2}}+2 \xi\left(\pm \theta+\frac{\partial f}{\partial \xi} \frac{\partial^{2} f}{\partial \eta^{2}}-\frac{\partial f}{\partial \eta} \frac{\partial^{2} f}{\partial \eta}\right)=0 \xi \tag{4}\\
\frac{1}{\sigma} \frac{\partial^{2} \theta}{\partial \eta^{2}}+f \frac{\partial \theta}{\partial \eta}+2 \xi\left(\frac{\partial f}{\partial \xi} \frac{\partial \theta}{\partial \eta}-\frac{\partial f}{\partial \eta} \frac{\partial \theta}{\partial \xi}\right)=0 \tag{5}
\end{gather*}
$$

with boundary conditions

$$
\begin{gathered}
f=\partial f / \partial \eta=0, \quad \theta=1 \quad \text { on } \quad \eta=0 \\
\partial f / \partial \eta \rightarrow 1, \quad \theta \rightarrow 0 \quad \text { as } \quad \eta \rightarrow \infty
\end{gathered}
$$

$\sigma=\nu / \kappa$ is the Prandtl number.
The method of solution of (4) and (5) is to expand f and θ in series in ξ in the form

$$
\begin{align*}
& f=f_{0}(\eta) \pm \xi f_{1}(\eta)+\xi^{2} f_{2}(\eta) \pm \ldots \tag{6}\\
& \theta=\theta_{0}(\eta) \pm \xi \theta_{1}(\eta)+\xi^{2} \theta_{2}(\eta) \pm \ldots \tag{7}
\end{align*}
$$

On putting these expansions in (4) and (5) and equating powers of ξ, we get essentially the same set of equations given by Szewczyk (1964) (equations (7)-(9) in his paper), except that the equation for f_{2} (equation (9a) in his paper) should read

$$
f_{2}^{\prime \prime \prime}+f_{0} f_{2}^{\prime \prime}+5 f_{2} f_{0}^{\prime \prime}-4 f_{0}^{\prime} f_{2}^{\prime}+3 f_{1} f_{1}^{\prime \prime}-2 f_{1}^{\prime} f_{1}^{\prime}+2 \theta_{1}=0
$$

This would account for the difference in Szewczyk's and the present solution for f_{2} and θ_{2} (see table A which is obtainable from the editor). (The values of $f_{1}^{\prime}, \theta_{1}$, f_{2}^{\prime} and θ_{2} for the case $\sigma=1$ are given in table A.)

The series expansions (6) and (7) enable us to calculate the values of various flow parameters near the leading edge. We obtain series for the skin friction coefficient

$$
\tau_{w}=\left(\frac{\nu}{U g \beta \Delta T}\right)^{\frac{1}{2}}\left(\frac{\partial u}{\partial y}\right)_{y=0}
$$

the heat transfer coefficient

$$
Q=-\left(\frac{\nu U}{g \beta \Delta T}\right)^{\frac{1}{2}} \frac{1}{\Delta T}\left(\frac{\partial T}{\partial y}\right)_{y=0}
$$

the momentum thickness

$$
\delta_{2}=\left(\frac{g \beta \Delta T}{\nu U}\right)^{\frac{1}{2}} \int_{0}^{\infty} \frac{u}{U}\left(1-\frac{u}{U}\right) d y
$$

and the temperature thickness

$$
\delta_{T}=\left(\frac{g \beta \Delta T}{\nu U}\right)^{\frac{1}{2}} \int_{0}^{\infty} \frac{u}{U}\left(\frac{T-T_{0}}{\Delta T}\right) d y
$$

For the case $\sigma=1$, we get

$$
\begin{aligned}
\tau_{w} & =(2 \xi)^{-\frac{1}{2}}\left(0 \cdot 4696 \pm 1 \cdot 6216 \xi-1 \cdot 2699 \xi^{2} \pm \ldots\right), \\
Q & =(2 \xi)^{\frac{-1}{2}}\left(0 \cdot 4696 \pm 0 \cdot 3834 \xi-0 \cdot 6544 \xi^{2} \pm \ldots\right), \\
\delta_{2} & =(2 \xi)^{\frac{1}{2}}\left(0 \cdot 4696 \pm 0 \cdot 2706 \xi+0 \cdot 0632 \xi^{2} \pm \ldots\right), \\
\delta_{T} & =(2 \xi)^{\frac{1}{2}}\left(0 \cdot 4696 \pm 0 \cdot 1278 \xi-0 \cdot 1309 \xi^{2} \pm \ldots\right) .
\end{aligned}
$$

4. Asymptotic expansion (favourable case only)

A long way from the leading edge, the boundary layer is formed mainly by the buoyancy forces. This suggests the following transformation,

$$
\psi=4 \nu C x^{\frac{3}{2}} \phi(\xi, \bar{\eta}), \quad T-T_{0}=\Delta T \bar{\theta}(\xi, \bar{\eta}),
$$

where

$$
\bar{\eta}=C y \mid x^{ \pm}
$$

and

$$
C=\left(g \beta \Delta T / 4 \nu^{2}\right)^{\frac{1}{2}} .
$$

The boundary-layer equations (2) and (3) become

$$
\begin{gather*}
\frac{\partial^{3} \phi}{\partial \bar{\eta}^{3}}+\bar{\theta}+3 \phi \frac{\partial^{2} \phi}{\partial \bar{\eta}^{2}}-2\left(\frac{\partial \phi}{\partial \bar{\eta}}\right)^{2}=4 \xi\left(\frac{\partial \phi}{\partial \bar{\eta}} \frac{\partial^{2} \phi}{\partial \bar{\eta} \partial \xi}-\frac{\partial \phi}{\partial \xi} \frac{\partial^{2} \phi}{\partial \overline{\bar{\eta}}^{2}}\right), \tag{8}\\
\frac{1}{\sigma} \frac{\partial^{2} \bar{\theta}}{\partial \overline{\bar{\eta}}^{2}}+3 \phi \frac{\partial \bar{\theta}}{\partial \bar{\eta}}=4 \xi\left(\frac{\partial \phi}{\partial \bar{\eta}} \frac{\partial \bar{\theta}}{\partial \xi}-\frac{\partial \phi}{\partial \xi} \frac{\partial \bar{\theta}}{\partial \bar{\eta}}\right), \tag{9}
\end{gather*}
$$

with boundary conditions

$$
\begin{gathered}
\phi=\frac{\partial \phi}{\partial \bar{\eta}}=0, \quad \bar{\theta}=1 \quad \text { on } \quad \bar{\eta}=0 \\
\frac{\partial \phi}{\partial \bar{\eta}} \rightarrow 2 \xi^{-\frac{1}{2}}, \quad \bar{\theta} \rightarrow 0 \quad \text { as } \quad \bar{\eta} \rightarrow \infty
\end{gathered}
$$

The form of the outer boundary condition on ϕ suggests expansions of ϕ and $\bar{\theta}$ in the form

$$
\begin{align*}
\phi & =\phi_{0}(\bar{\eta})+\xi^{-\frac{1}{2}} \phi_{1}(\bar{\eta})+\xi^{-1} \log \xi \Phi_{2}(\bar{\eta})+\xi^{-1} \phi_{2}(\bar{\eta})+\ldots \tag{10}\\
\bar{\theta} & =\bar{\theta}_{0}(\bar{\eta})+\xi^{-\frac{1}{2}} \bar{\theta}_{1}(\bar{\eta})+\xi^{-1} \log \xi H_{\mathbf{2}}(\bar{\eta})+\xi^{-1} \bar{\theta}_{2}(\bar{\eta})+\ldots \tag{11}
\end{align*}
$$

Terms of $O\left(\xi^{-1} \log \xi\right)$ have to be included in the expansions (10) and (11) in order to be able to solve the equations for the terms of $O\left(\xi^{-1}\right)$. The necessity for including logarithmic terms in asymptotic expansions in boundary-layer theory is discussed by Stewartson (1957, 1964).

The equations for $\phi_{0}, \bar{\theta}_{0}, \phi_{1}$ and $\bar{\theta}_{1}$ are the same as those given by Szewczyk (equations (23) and (24) in his paper). The numerical solutions for ϕ_{0} and $\bar{\theta}_{0}$ are given by Ostrach (1953) and the values of ϕ_{1}^{\prime} and $\bar{\theta}_{1}$ for the case $\sigma=1$ are given in table B which is available from the editor.

The equations for the terms of $O\left(\xi^{-1} \log \xi\right)$ are

$$
\begin{gather*}
\Phi_{2}^{\prime \prime \prime}+H_{2}+3 \phi_{0} \Phi_{2}^{\prime \prime}-\phi_{0}^{\prime \prime} \Phi_{2}=0 \tag{12}\\
\frac{1}{\sigma} H_{2}^{\prime \prime}+3 \phi_{0} H_{2}^{\prime}-\Phi_{2} \bar{\theta}_{0}^{\prime}+4 \phi_{0}^{\prime} H_{2}=0 \tag{13}
\end{gather*}
$$

with boundary conditions

$$
\Phi_{2}(0)=\Phi_{2}^{\prime}(0)=\Phi_{2}^{\prime}(\infty)=H_{2}(0)=H_{2}(\infty)=0 .
$$

The solution of (12) and (13) which satisfies the required boundary conditions is

$$
\Phi_{2}=\lambda\left(\bar{\eta} \phi_{0}^{\prime}-3 \phi_{0}\right)=\lambda \Phi_{c}, \quad H_{2}=\lambda \bar{\eta} \bar{\theta}_{0}^{\prime}=\lambda H_{c},
$$

where λ is an, as yet, undetermined constant.

The equations for the terms of $O\left(\xi^{-1}\right)$ then become

$$
\begin{gather*}
\phi_{2}^{\prime \prime \prime}+\bar{\theta}_{2}+3 \phi_{0} \phi_{2}^{\prime \prime}-\phi_{0}^{\prime \prime} \phi_{2}=4 \lambda\left(3 \phi_{0} \phi_{0}^{\prime \prime}-2 \phi_{0}^{\prime 2}\right)-\phi_{1} \phi_{1}^{\prime \prime} \tag{14}\\
\frac{1}{\sigma} \bar{\theta}_{2}^{\prime \prime}+3 \phi_{0} \bar{\theta}_{2}^{\prime}-\phi_{2} \bar{\theta}_{0}^{\prime}+4 \phi_{0}^{\prime} \bar{\theta}_{2}=-\bar{\theta}_{1}^{\prime} \phi_{1}-2 \phi_{1}^{\prime} \bar{\theta}_{1}+12 \lambda \bar{\theta}_{0}^{\prime} \phi_{0} \tag{15}
\end{gather*}
$$

with boundary conditions

$$
\phi_{2}(0)=\phi_{2}^{\prime}(0)=\bar{\theta}_{2}(0)=\phi_{2}^{\prime}(\infty)=\bar{\theta}_{2}(\infty)=0 .
$$

Szewczyk omitted the terms of $O\left(\xi^{-1} \log \xi\right)$ and his solution for the terms of $O\left(\xi^{-1}\right)$ appears to be wrong. λ has to be chosen so that we can obtain solutions for (14) and (15) which satisfy the required boundary conditions. The method of doing this is discussed in the appendix. We find that, for $\sigma=1$,

$$
\lambda=-0.015643
$$

(The values of Φ_{2}^{\prime} and H_{2} are given in table B.) We can still add arbitrary multiples $\mu \Phi_{c}$ and μH_{c} to any solution of (14) and (15) and this will still satisfy the required boundary conditions. μ will depend on some overall property of the boundary layer which we are unable to determine. If, however, we compare the velocity and temperature profiles obtained from the asymptotic series with those obtained from the step-by-step solution, a value of $\mu=0.03 \pm 0 \cdot 01$ is suggested.

From expansions (10) and (11) we can determine the asymptotic values of the flow parameters. We find, for $\sigma=1$,

$$
\begin{aligned}
\tau_{w} & =2^{\frac{1}{2}} \xi^{\frac{1}{2}}\left(0.6422+0.0830 \xi^{-\frac{1}{2}}+0.0105 \xi^{-1} \log \xi+(0.0974-0.6422 \mu) \xi^{-1}+\ldots\right), \\
Q & =2^{-\frac{1}{2}} \xi^{-\frac{1}{4}}\left(0.5671+0.0712 \xi^{-\frac{1}{2}}-0.0089 \xi^{-1} \log \xi+0.5671 \mu \xi^{-1}+\ldots\right) \\
\delta_{2} & =2^{\frac{3}{2}} \xi^{\frac{\xi}{4}}\left(-0.1839+0.1832 \xi^{-\frac{1}{2}}-0.0144 \xi^{-1} \log \xi+\ldots\right), \\
\delta_{T} & =2^{\frac{3}{2}} \xi^{\frac{3}{3}}\left(0.1890+0.0772 \xi^{-\frac{1}{2}}+0.0089 \xi^{-1} \log \xi+\ldots\right) .
\end{aligned}
$$

5. Step-by-step solution

The step-by-step solution is an accurate one, i.e. the full boundary-layer equations are solved and the accuracy is limited only by the time taken to perform the calculations on the computer. We follow closely the method that Terrill (1960) used to describe the flow caused by a retarded main stream. The idea is that, knowing velocity and temperature profiles at one station ξ_{1}, we can calculate them at another station ξ_{2}, downstream of ξ_{1}. As in Terrill's case we first apply a transformation to the boundary-layer equations (1), (2) and (3). For starting the numerical solution, the transformed equations (4) and (5) are the appropriate ones to use. In the favourable case this transformation is not appropriate far downstream, and we have to use the transformed equations (8) and (9); the change over from one set of equations to the other being done most conveniently at $\xi=1$. In this case we proceed with the integration in the ξ-direction until the numerical solution agrees with the asymptotic series solution to the required accuracy. In the adverse case the flow separates and so the numerical method cannot be used beyond this point.

We will give an outline of the method used to solve (4) and (5). A similar method was used on (8) and (9); and a full description of the methods used will be given in my Ph.D. thesis (Manchester University).

As in Terrill's case we work in terms of $q=\partial f / \partial \eta$. The first approximation to be made is to replace derivatives in the ξ-direction by differences and all other quantities by averages. This leads to a fifth-order system of non-linear ordinary differential equations which we have to solve by iteration. The iterative procedure used was as follows: if q_{1}, θ_{1} and q_{2}, θ_{2} are the values of velocity and temperature at ξ_{1} and ξ_{2} respectively, then we define

$$
v=q_{1}+q_{2} \quad \text { and } \quad u=\theta_{1}+\theta_{2} .
$$

Suppose $v^{(m)}$ and $u^{(m)}$ are the m th iterative approximation then $v^{(m+1)}$ and $u^{(m+1}$ are given by the equations

$$
\begin{align*}
\frac{d^{2} v^{(m+1)}}{d \eta^{2}} & +\frac{d v^{(m)}}{d \eta} \int_{0}^{\eta}\left(\frac{v^{(m+1)}}{2}+\lambda\left(v^{(m+1)}-2 q_{1}\right)\right) d \eta \\
& \pm\left(\xi_{1}+\xi_{2}\right) u^{(m)}-\lambda v^{(m)}\left(v^{(m+1)}-2 q_{1}\right)=0, \tag{16}\\
\frac{1}{\sigma} \frac{d^{2} u^{(m+1)}}{d \eta^{2}} & +\frac{d u^{(m+1)}}{d \eta} \int_{0}^{\eta}\left(\frac{v^{(m)}}{2}+\lambda\left(v^{(m)}-2 q_{1}\right)\right) d \eta \\
& +\lambda v^{(m)}\left(u^{(m+1)}-2 \theta_{1}\right)=0,
\end{align*}
$$

where $v^{(m)}$ in (17) is the $v^{(m+1)}$ calculated from (16), and

$$
\lambda=\frac{\xi_{2}+\xi_{1}}{\xi_{2}-\xi_{1}} .
$$

This iteration process was found to converge easily.
To solve (16) and (17), differences are introduced in the η-direction. This reduces the problem to the solution of the two matrix equations of the form

$$
\begin{align*}
A^{(m)} \mathbf{v}^{(m+1)} & =\mathbf{c}^{(m)}, \tag{18}\\
B^{(m)} \mathbf{u}^{(m+1)} & =\mathbf{d}^{(m)}, \tag{19}
\end{align*}
$$

where the elements of the column vectors $\mathbf{c}^{(m)}$ and $\mathbf{d}^{(m)}$ are all known; $A^{(m)}$ is the same matrix as that given by Terrill, and $B^{(m)}$ is a band matrix. The method of Choleski (Hartree 1958, pp. 180-4) is used to solve (18) and (19). Using this method and the special form of the matrices $A^{(m)}$ and $B^{(m)}$ we can keep the storage space needed on the computer down to a minimum.

The program was initially written to achieve an overall accuracy of 4 decimals in q and θ. The errors arising from using finite differences in the ξ-direction were kept small by covering the step from ξ_{1} to ξ_{2} in first one, then two steps, and ensuring that the maximum modulus of the difference in the two solutions thus obtained was less than 5×10^{-5}. The values of q and θ obtained from integrating at the half intervals were the ones printed out and also the ones used for the next step. The integrations in the η-direction were carried out with η taking the values

$$
\eta=0.05(0.05) 6 \cdot 4
$$

in the favourable case, and $\quad \eta=0.05(0.05) 7.2$
in the adverse case. For the solution of (8) and (9), $\bar{\eta}$ took the values

$$
\bar{\eta}=0.05(0.05) 10 .
$$

It was found that the outer boundary conditions on q and θ were satisfied to the required accuracy at the points chosen.

The size of the truncation errors in the η-direction were checked using finite difference estimates for the errors, and these showed that the required accuracy had been reached. In the favourable case the truncation errors were also checked by performing another integration with η taking the values

$$
\eta=0 \cdot 025(0 \cdot 025) 3 \cdot 2
$$

The outer boundary conditions on q and θ were calculated from the solution with step length 0.05 . This also confirmed that the required accuracy had been reached.

The initial profiles were taken as $f_{0}^{\prime}(\eta)$ and $\theta_{0}^{\prime}(\eta)$ from the series solution for small ξ. The numerical solution could not start at $\xi=0$ because the iteration process did not converge there, but had to start from $\xi=5 \times 10^{-6}$, with an initial small step of 5×10^{-6}, so a procedure was introduced for doubling the step length when the maximum number of iterations needed in going from ξ_{1} to ξ_{2} was less than four.

From the velocity and temperature profiles calculated at a particular station we can include a procedure for calculating the flow parameters. δ_{2} and δ_{T} are calculated using the Euler-Maclarin formula to calculate the integrals. From the boundary-layer equations, we know that, on $\eta=0$,

$$
\begin{gathered}
\partial^{2} q / \partial \eta^{2}=\mp 2 \xi, \quad \partial^{3} q / \partial \eta^{3}=\mp 2 \xi \partial \theta / \partial \eta, \\
\partial^{2} \theta / \partial \eta^{2}=0, \quad \partial^{3} \theta / \partial \eta^{3}=0 .
\end{gathered}
$$

Putting these results in the Taylor series expansions for q and θ, for fixed ξ, we get the formulae

$$
\begin{align*}
& \left(\frac{\partial \theta}{\partial \eta}\right)_{0}=\frac{\theta_{1}-1}{h}+O\left(h^{3}\right) \tag{20a}\\
& \left(\frac{\partial \theta}{\partial \eta}\right)_{0}=\frac{16 \theta_{1}-\theta_{2}-15}{14 h}+O\left(h^{4}\right), \tag{20b}\\
& \left(\frac{\partial q}{\partial \eta}\right)_{0}=\frac{q_{1}}{h} \pm \xi h \pm \frac{\xi h^{2}}{3}\left(\frac{\partial \theta}{\partial \eta}\right)_{0}+\left(O h^{3}\right) \tag{21a}\\
& \left(\frac{\partial q}{\partial \eta}\right)_{0}=\frac{16 q_{1}-q_{2} \pm 12 \xi h^{2} \pm \frac{8}{3} \xi h^{3}\left(\frac{\partial \theta}{\partial \eta}\right)_{0}}{14 h}+O\left(h^{4}\right) . \tag{21b}
\end{align*}
$$

The results from using the formulae (20a) and (20b) and from (21a) and (21b) were compared and a difference of at most 2 in the fifth decimal place resulted, except in the adverse case when the separation point was approached. In this case the difference was still small, being at most 3 in the fourth decimal place. Similar formulae were used in the calculation for $\xi \geqslant 1$ (favourable case).

6. Discussion of the results

Tables 1 and 2 give the flow parameters at various values of ξ for the favourable and adverse cases respectively. Tables of velocity and temperature profiles for both cases will be included in my Ph.D. thesis (Manchester University).

The initial integration in the adverse case, working to an accuracy of 4 figures, showed that, at separation, τ_{w} and Q become singular. The integration in this

Figure 1. The behaviour of the skin friction τ_{ω} and the heat transfer Q near separation.
case was then performed again, working to an accuracy of 5 figures. Graphs of τ_{w} and Q are given in figure 1 . From them it appears that as $\xi \rightarrow \xi_{s}$ (ξ_{s} is the point where the flow separates)

$$
\tau_{w} \rightarrow 0, \quad Q \rightarrow Q_{s},
$$

but

$$
d \tau_{w} / d \xi \rightarrow \infty \quad \text { and } \quad d Q / d \xi \rightarrow \infty
$$

where

$$
\xi_{s}=0 \cdot 192357
$$

and

$$
Q_{s}=0.428
$$

ξ	Q	τ_{ω}	δ_{2}	δ_{τ}
$0 \cdot 00001$	$1.050 \sim 2$	$1 \cdot 050 \alpha 2$	$2 \cdot 100 \alpha-3$	$2 \cdot 100 \alpha-3$
0.00448	$4.978 \propto 0$	$5 \cdot 038 \alpha 0$	$4.433 \alpha-2$	$4.449 \alpha-2$
$0 \cdot 04928$	$1.552 \alpha 0$	$1.742 \alpha 0$	$1.433 \propto-1$	$1.493 \alpha-1$
$0 \cdot 10048$	1-122 $\alpha 0$	$1.388 \alpha 0$	$1.985 \propto-1$	$2.157 \alpha-1$
$0 \cdot 20288$	8.135 $\alpha-1$	$1 \cdot 196 \alpha 0$	$2.655 \propto-1$	$3.131 \alpha-1$
$0 \cdot 30528$	$7.066 \propto-1$	$1 \cdot 142 \alpha 0$	$3.059 \propto-1$	$3.912 \alpha-1$
$0 \cdot 46912$	$6.011 \propto-1$	$1 \cdot 120 \alpha 0$	$3 \cdot 412 \alpha-1$	$4.974 \alpha-1$
$0 \cdot 55104$	$5.672 \alpha-1$	$1 \cdot 121 \alpha 0$	$3 \cdot 498 \alpha-1$	$5 \cdot 452 \alpha-1$
$0 \cdot 67392$	$5 \cdot 284 \alpha-1$	$1 \cdot 127 \alpha 0$	$3.543 \propto-1$	$6.124 \alpha-1$
$0 \cdot 79680$	$4.989 \propto-1$	$1 \cdot 137 \alpha 0$	$3 \cdot 506 \propto-1$	$6.754 \alpha-1$
0.87872	4.827×-1	$1 \cdot 145 \alpha 0$	$3 \cdot 443 \propto-1$	$7 \cdot 156 \alpha-1$
$1 \cdot 00000$	$4 \cdot 624 \alpha-1$	$1 \cdot 157 \alpha 0$	$3.301 \alpha-1$	$7.729 \propto-1$
$1 \cdot 2815$	$4 \cdot 266 \propto-1$	$1 \cdot 186 \alpha 0$	$2.787 \propto-1$	$8.977 \propto-1$
$1 \cdot 5375$	$4.028 \alpha-1$	$1 \cdot 213 \alpha 0$	$2.135 \propto-1$	$1 \cdot 004 \alpha 0$
$2 \cdot 1007$	$3 \cdot 659 \alpha-1$	$1 \cdot 268 \alpha 0$	$2.269 \alpha-2$	$1.220 \alpha 0$
$2 \cdot 5103$	$3.468 \alpha-1$	$1.304 \alpha 0$	$-1.485 \alpha-1$	$1.365 \alpha 0$
$4 \cdot 0463$	3.018 人-1	$1 \cdot 419 \alpha 0$	$-9.649 \alpha-1$	$1.860 \alpha 0$
$5 \cdot 2751$	$2 \cdot 799 \alpha-1$	$1.494 \alpha 0$	$-1.765 \alpha 0$	$2 \cdot 217 \alpha 0$
$10 \cdot 190$	$2.334 \alpha-1$	$1.714 \alpha 0$	$-5.794 \alpha 0$	$3 \cdot 462 \alpha 0$
$19 \cdot 201$	$1.970 \alpha-1$	$1.974 \alpha 0$	$-1.529 \alpha 1$	$5 \cdot 380 \alpha 0$
$29 \cdot 032$	$1.767 \alpha-1$	$2 \cdot 171 \alpha 0$	$-2.761 \propto 1$	$7 \cdot 209 \alpha 0$
51.969	$1.512 \alpha-1$	$2 \cdot 491 \alpha 0$	$-6.144 \alpha 1$	$1.094 \alpha 1$
$78 \cdot 184$	$1.37 \quad \alpha-1$	$2 \cdot 747 \alpha 0$	$-1.061 \alpha 2$	$1.471 \alpha 1$
$150 \cdot 27$	$1.157 \alpha-1$	$3 \cdot 218 \alpha 0$	$-1.161 \alpha 2$	$1 \cdot 471 \propto 1$
$242 \cdot 02$	$1.025 \alpha-1$	$3.615 \alpha 0$	$-4.632 \alpha 2$	$3 \cdot 365 \propto 1$
$346 \cdot 88$	$9.352 \alpha-2$	$3.949 \alpha 0$	$-7.353 \alpha 2$	$4 \cdot 390 \alpha 1$
$504 \cdot 17$	$8.507 \alpha-2$	$4.331 \sim 0$	$-1.186 \alpha 3$	$5 \cdot 790 \propto 1$
$102 \cdot 8$	$7 \cdot 107 \alpha-2$	$5 \cdot 615 \alpha 0$	$-2.933 \alpha 3$	$9.830 \propto 1$
$1343 \cdot 0$	$6.645 \alpha-2$	$5.519 \alpha 0$	$-4 \cdot 111 \alpha 3$	$1 \cdot 199 \alpha 1$
series ${ }^{\text {d }}$	$6 \cdot 647 \alpha-2$	$5.518 \alpha 0$	$-4 \cdot 116 \alpha 3$	$1.198 \alpha 1$

Table 1. Flow parameters (favourable case)-given in floating point notation.

ξ	Q	τ_{ω}	δ_{2}	δ_{τ}
0.00249	$7 \cdot 324$	7.284	0.0301	0.0304
0.01265	3.099	$3 \cdot 006$	$0 \cdot 0793$	$0 \cdot 0725$
0.03174	1.813	1.654	$0 \cdot 1205$	$0 \cdot 1172$
0.08499	1.045	$0 \cdot 7764$	0.2033	$0 \cdot 1886$
$0 \cdot 11366$	0.8664	$0 \cdot 5492$	0.2390	0.2158
$0 \cdot 14234$	0.7321	$0 \cdot 3676$	$0 \cdot 2719$	$0 \cdot 2387$
$0 \cdot 16691$	0.6288	$0 \cdot 2224$	$0 \cdot 2986$	0.2554
$0 \cdot 17920$	0.5271	$0 \cdot 1433$	0.3117	0.2678
0.18739	0.5222	0.0782	$0 \cdot 3207$	0.2672
$0 \cdot 19098$	$0 \cdot 4852$	0.0366	0.3240	0.2691
$0 \cdot 19174$	$0 \cdot 4703$	0.0289	$0 \cdot 3248$	0.2694
$0 \cdot 19200$	$0 \cdot 4628$	0.0168	0.3251	$0 \cdot 2696$
$0 \cdot 19226$	$0 \cdot 4499$	0.0081	0.3253	$0 \cdot 2697$
$0 \cdot 192337$	$0 \cdot 4399$	0.0032	$0 \cdot 3254$	0.2697
$0 \cdot 192353$	$0 \cdot 4340$	$0 \cdot 0012$	$0 \cdot 3254$	$0 \cdot 2697$
$0 \cdot 192355$	$0 \cdot 4320$	$0 \cdot 0008$	0.3254	$0 \cdot 2697$
$0 \cdot 192356$	$0 \cdot 4293$	$0 \cdot 0002$	0.3254	0.2697
$0 \cdot 192357$	$0 \cdot 4281$	$0 \cdot 0000$	0.3254	$0 \cdot 2697$

Table 2. Flow parameters (adverse case).

The existence of this singularity conflicts with a result of Stewartson (1962), who gave an argument to show that the solution should be regular at separation. Actually, Stewartson proved his result for a compressible boundary layer with heat transfer, but the same theory applies in this case.

I would like to thank Mr E. J. Watson for his supervision during the preparation of this paper. I would also like to thank the S.R.C. for the Research Studentship which enabled me to undertake this research.

Appendix. Determination of λ

The solutions ϕ_{2} and $\bar{\theta}_{2}$ of (14) and (15) are of the form

$$
\phi_{2}=\phi_{2 a}+4 \lambda \phi_{2 b}+\mu \Phi_{c}, \quad \bar{\theta}_{2}=\bar{\theta}_{2 a}+4 \lambda \bar{\theta}_{2 b}+\mu H_{c},
$$

where μ is an undetermined constant, $\phi_{2 a}$ and $\bar{\theta}_{2 a}$ satisfy (14) and (15) with $\lambda=0$, and $\phi_{2 b}$ and $\bar{\theta}_{2 b}$ satisfy

$$
\begin{gathered}
\phi_{2 b}^{\prime \prime \prime}+\bar{\theta}_{2 b}+3 \phi_{0} \phi_{2 b}^{\prime \prime}-\phi_{0}^{\prime \prime} \phi_{2 b}=3 \phi_{0} \phi_{0}^{\prime \prime}-2 \phi_{0}^{\prime 2}, \\
\frac{1}{\sigma} \bar{\theta}_{2 b}^{\prime \prime}+3 \phi_{0} \bar{\theta}_{2 b}^{\prime}-\bar{\theta}_{0}^{\prime} \phi_{2 b}+4 \phi_{0}^{\prime} \bar{\theta}_{2 b}=3 \phi_{0} \bar{\theta}_{0}^{\prime} .
\end{gathered}
$$

We now construct solutions of the form

$$
\begin{aligned}
\phi_{2 a}=X_{a}+\alpha X_{1}+\beta X_{2}, & \bar{\theta}_{2 a}=W_{a}+\alpha W_{1}+\beta W_{2} \\
\phi_{2 b}=X_{b}+\gamma X_{1}+\delta X_{2}, & \bar{\theta}_{2 b}=W_{b}+\gamma W_{1}+\delta W_{2}
\end{aligned}
$$

where $\left(X_{a}, W_{a}\right)$ and $\left(X_{b}, W_{b}\right)$ are particular integrals of the respective equations with

$$
\begin{aligned}
& X_{a}^{\prime \prime}(0)=0, \\
& W_{a}^{\prime}(0)=0, \\
& W_{b}^{\prime \prime}(0)=0 \\
& \hline
\end{aligned}
$$

and $\left(X_{1}, W_{1}\right),\left(X_{2}, W_{2}\right)$ are complementary functions with

$$
X_{1}^{\prime \prime}(0)=1, \quad W_{1}^{\prime}(0)=0, \quad X_{2}^{\prime \prime}(0)=0, \quad W_{2}^{\prime}(0)=1
$$

From the equations, we have, as $\bar{\eta} \rightarrow \infty$,

$$
\begin{gathered}
W_{i} \rightarrow Q_{i} \\
X_{i}^{\prime} \sim-\frac{Q_{i} \bar{\eta}}{3 \phi_{0}(\infty)}+P_{i},
\end{gathered}
$$

where $i=a, b, \mathbf{1}, 2$ and Q_{i}, P_{i} are constants. Now Φ_{c} and H_{c} are complementary functions with

$$
\Phi_{c}^{\prime \prime}(0)=-\phi_{0}^{\prime \prime}(0), \quad H_{c}^{\prime}(0)=\bar{\theta}_{0}^{\prime}(0)
$$

so that $\quad \Phi_{c}=-\phi_{0}^{\prime \prime}(0) X_{1}+\bar{\theta}_{0}^{\prime}(0) X_{2}, \quad H_{c}=-\phi_{0}^{\prime \prime}(0) W_{1}+\bar{\theta}_{0}^{\prime}(0) W_{2}$ and as Φ_{c}^{\prime} and $H_{c} \rightarrow 0$ as $\bar{\eta} \rightarrow \infty$, we get the relations

We also have

$$
\begin{equation*}
\bar{\theta}_{0}^{\prime}(0) Q_{2}=\phi_{0}^{\prime \prime}(0) Q_{1}, \quad \bar{\theta}_{0}^{\prime}(0) P_{2}=\phi_{0}^{\prime \prime}(0) P_{1} \tag{22}
\end{equation*}
$$

$$
\bar{\theta}_{2 a}(\infty)=Q_{a}+\alpha Q_{1}+\beta Q_{2}
$$

$$
\phi_{2 a}^{\prime}(\bar{\eta}) \sim P_{a}+\alpha P_{1}+\beta P_{2}-\left(\bar{\theta}_{2 a}(\infty) \bar{\eta} / 3 \phi_{0}(\infty)\right) .
$$

From this we can see why the term of $O\left(\xi^{-1} \log \xi\right)$ had to be included. Trying to make $\phi_{2 a}^{\prime}(\infty)$ and $\bar{\theta}_{2 a}(\infty)=0$ gives equations for α and β which become, on using (22),

$$
\alpha+\left(\phi_{0}^{\prime \prime}(0) / \bar{\theta}_{0}^{\prime}(0)\right) \beta=-P_{a} / P_{1}, \quad \alpha+\left(\phi_{0}^{\prime \prime}(0) / \bar{\theta}_{0}^{\prime}(0)\right) \beta=-Q_{a} / Q_{1} .
$$

These are inconsistent, so we have to consider the forms of $\bar{\theta}_{2}$ and ϕ_{2}^{\prime} as $\bar{\eta} \rightarrow \infty$

$$
\begin{gathered}
\bar{\theta}_{2}(\infty)=Q_{a}+4 \lambda Q_{b}+(\alpha+4 \lambda \gamma) Q_{1}+(\beta+4 \lambda \delta) Q_{2} \\
\phi_{2}^{\prime}(\bar{\eta}) \sim P_{a}+4 \lambda P_{b}+(\alpha+4 \lambda \gamma) P_{1}+(\beta+4 \lambda \delta) P_{2}-\left(\bar{\theta}_{2}(\infty) \bar{\eta} / 3 \phi_{0}(\infty)\right) .
\end{gathered}
$$

Putting $\bar{\theta}_{2}(\infty)=\phi_{2}^{\prime}(\infty)=0$ leads to the equations, using (22),

$$
\begin{align*}
& (\alpha+4 \lambda \gamma)+\frac{\phi_{0}^{\prime \prime}(0)}{\bar{\theta}_{0}^{\prime}(0)}(\beta+4 \lambda \delta)=-\left(\frac{P_{a}+4 \lambda P_{b}}{P_{1}}\right), \tag{23}\\
& (\alpha+4 \lambda \gamma)+\frac{\phi_{0}^{\prime \prime}(0)}{\bar{\theta}_{0}^{\prime}(0)}(\beta+4 \lambda \delta)=-\left(\frac{Q_{a}+4 \lambda Q_{b}}{Q_{1}}\right), \tag{24}
\end{align*}
$$

which are consistent provided

$$
4 \lambda=\frac{P_{1} Q_{a}-P_{a} Q_{1}}{P_{b} Q_{1}-Q_{b} P_{1}}
$$

A numerical integration of the equations shows that, for $\sigma=1$,

$$
\lambda=-0.015643
$$

REFERENCES

Hartree, D. R. 1958 Numerical Analysis, 2nd edition. Oxford University Press.
Ostrach, S. 1953 An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. N.A.C.A. Rep. 111.
Stewartson, K. 1957 On asymptotic expansions in the theory of boundary layers. J. Math. Phys. 36, 173.

Stewartson, K. 1962 The behaviour of a laminar compressible boundary layer near a point of zero skin-friction. J. Fluid Mech. 12, 117.
Stewartson, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids. Oxford Mathematical Monograph.
Szewczyk, A. A. 1964 Combined forced and free-convection laminar flow. Trans. A.S.M.E.J. Heat Transfer, 86, 501.

Terrile, R. M. 1960 Laminar boundary layer flow near separation with and without suction. Phil. Trans. A 253, 55.
Whitham, G. B. 1963 The Navier--Stokes equations of motion. In Laminar Boundary Layers, ed. L. Rosenhead. Oxford University Press.

